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Abstract

Social interactions are essential for human development, yet little neuroimaging

research has examined their underlying neurocognitive mechanisms using socially

interactive paradigms during childhood and adolescence. Recent neuroimaging

research has revealed activity in the mentalizing network when children engage with

a live social partner, even when mentalizing is not required. While this finding sug-

gests that social-interactive contexts may spontaneously engage mentalizing, it is not

a direct test of how similarly the brain responds to these two contexts. The current

study used representational similarity analysis on data from 8- to 14-year-olds who

made mental and nonmental judgments about an abstract character and a live inter-

action partner during fMRI. A within-subject, 2 (Mental/Nonmental) � 2 (Peer/Char-

acter) design enabled us to examine response pattern similarity between conditions,

and estimate fit to three conceptual models of how the two contexts relate: (1) social

interaction and mentalizing about an abstract character are represented similarly;

(2) interactive peers and abstract characters are represented differently regardless of

the evaluation type; and (3) mental and nonmental states are represented dissimilarly

regardless of target. We found that the temporal poles represent mentalizing and

peer interactions similarly (Model 1), suggesting a neurocognitive link between the

two in these regions. Much of the rest of the social brain exhibits different represen-

tations of interactive peers and abstract characters (Model 2). Our findings highlight

the importance of studying social-cognitive processes using interactive approaches,

and the utility of pattern-based analyses for understanding how social-cognitive pro-

cesses relate to each other.
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1 | INTRODUCTION

Social interactions, or reciprocal exchanges between socially engaged

individuals, are a ubiquitous part of daily life and play an important

role in shaping the human brain. Despite the relative ease with which

most individuals are able to engage in social interactions, a myriad of

neurocognitive processes underlies this complex social behavior.

Mentalizing (also known as “theory of mind”) is the early developing

ability to attribute mental states to others that are thought to play an

increasingly critical role in navigating social interactions from
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childhood into adulthood (Frith & Frith, 2001; Frith & Frith, 2012;

Wellman, 2017). Neuroimaging research has revealed a common net-

work of brain regions, often referred to as the “mentalizing network,”
that are activated across a range of tasks that require mental state

reasoning. This network includes the dorsal and ventral regions of the

medial prefrontal cortex (dmPFC and vmPFC), inferior frontal gyrus

(IFG), dorsolateral prefrontal cortex (dlPFC), precuneus,

temporoparietal junction (TPJ), anterior temporal lobe (ATL), and

superior temporal sulcus (STS; Mar, 2011; Molenberghs et al., 2016;

Schurz et al., 2014). However, most neuroimaging investigations of

mentalizing have utilized noninteractive experimental paradigms

wherein adults make third-person attributions about abstract charac-

ters or simply observe social behavior. Thus, relatively little is known

about the neural substrates linking mentalizing to active engagement

in social-interactive contexts, much less the neurocognitive relation-

ship between the two during the transition to adolescence, which is a

period marked by significant social development.

Despite the relative lack of neuroimaging work examining the

relationship between mentalizing and social interaction, evidence

from developmental research suggests that the progression from

childhood to adolescence may be an important period for understand-

ing how mentalizing and peer interaction relate, as developmental

changes are seen in both. Starting in early childhood, individuals' peer

relationships become increasingly important, such that they spend

progressively more time with friends over parents, and this social re-

orienting is accompanied by changes in brain systems associated with

perception, motivation/affect, and executive function (Ladd, 1999;

Nelson et al., 2016; Parker et al., 2006). This trajectory aligns with

neuroimaging work demonstrating that the mentalizing network is

functionally distinct by the age of three (Richardson et al., 2018), but

exhibits increasing functional specialization through adolescence and

into adulthood (Gweon et al., 2012; Moraczewski et al., 2020;

Richardson et al., 2020). There is also increased sensitivity in the

brain's reward system to social contexts as children transition into

adolescence (Chein et al., 2011; Moreira & Telzer, 2018; Smith

et al., 2015), and activity in the reward and mentalizing networks dur-

ing adolescence is indicative of a tendency to spontaneously integrate

peer perspectives into self-evaluations (Jankowski et al., 2014; Pfeifer

et al., 2009; Van der Cruijsen et al., 2019). In particular, this work sug-

gests an inverted-U-shaped trajectory in the neural sensitivity to and

self-report of self-conscious emotions (i.e., social emotions like embar-

rassment that indicate perceived evaluation by others) from middle

childhood to young adulthood (Somerville et al., 2013). Together,

these findings indicate that the pre-adolescent to early adolescent

period is a promising age-range for understanding the neurocognitive

links between mentalizing and social interaction, and how they

develop with age. Until recently, however, most of our understanding

of the mentalizing network comes from work on adults.

Neuroimaging studies using adult samples have demonstrated

activations primarily within the mentalizing network across tasks that

elicit mentalizing through a variety of noninteractive approaches. This

includes tasks with explicit instructions to make inferences about an

abstract character's mental state (compared to, for example, physical

characteristics), as well as the assessment of spontaneous

mentalizing—that is, elicited independently of task demands

(i.e., without prompting)1—for example, when individuals use mental-

state language to describe the behavior of moving shapes that are ani-

mated to resemble agency (see Mar, 2011; Molenberghs et al., 2016;

Schurz et al., 2014). The spatial convergence of brain activations

across these varied experimental paradigms has been used as evi-

dence for the mentalizing brain network and laid the foundations for

much of the social cognitive neuroscience literature since. However,

this foundation has a crucial limitation: it characterizes social cognition

only in observational (i.e., noninteractive) contexts, leaving gaps in our

understanding of the neurocognitive processes involved in real-world,

social-interactive behavior.

2 | SECOND-PERSON NEUROSCIENCE

A body of neuroimaging studies, collectively referred to as “second-
person neuroscience,” has provided new avenues for understanding

the neurocognitive processes involved in social interaction

(Redcay & Schilbach, 2019; Schilbach et al., 2013). This set of

approaches has utilized paradigms that involve engaging with a

social partner in real time, thereby providing practical and theoretical

advancements to the study of social cognition compared to tradi-

tional, third-person approaches. For instance, second-person neuro-

science work using developmental samples has demonstrated that

children are more motivated and rewarded when interacting with a

live social partner compared to a computer or character, as indexed

through behavioral responses, self-report, and neural activations

(Alkire et al., 2018; Rice et al., 2016; Rice & Redcay, 2016; Warnell

et al., 2018). Second-person neuroscience studies using adult and

child samples have also demonstrated that simply engaging with a

live social partner recruits a more extended network of brain sys-

tems than has been previously reported in traditional social neurosci-

ence studies relying on noninteractive, third-person approaches

(Redcay et al., 2010; Redcay & Schilbach, 2019; Redcay &

Warnell, 2018; Warnell et al., 2018). In particular, this work has dem-

onstrated greater activations in the mentalizing network when indi-

viduals simply perceive a real-life social partner (versus an abstract

or unknown social entity), even in the absence of any explicit mental

state information or task demands to mentalize (Alkire et al., 2018;

Redcay & Schilbach, 2019; Warnell et al., 2018). Although these

findings seem to indicate that individuals are spontaneously

mentalizing in the presence of a social partner, it is possible that

these brain regions are part of an integrated network of systems that

support “online” social behavior (i.e., when actively engaged in real-

time social contexts) that have superficial overlap with regions

supporting “offline” social cognition in noninteractive and observa-

tional contexts (Schilbach, 2014; Schilbach et al., 2013).

1Throughout the manuscript, we contrast spontaneous with explicit mentalizing, which we

define as being explicitly prompted by the task. This is not to be confused with implicit

versus explicit cognitive processes (e.g., Frith & Frith, 2008), either of which can be engaged

spontaneously.

MERCHANT ET AL. 4075



Attempts at interpreting the meaning of activations in the

mentalizing network during social engagements point to the

broader limitations of reversely inferring a cognitive process from

the spatial location of brain activations (Hutzler, 2014;

Poldrack, 2006). For instance, Alkire et al. (2018) reported over-

lapping activations in the ATL, STS, and IFG when children rea-

soned about the mental state of an abstract character and when

they engaged in social interactions that did not explicitly require

mental state reasoning, and inferred that social interaction may

induce spontaneous mentalizing. However, these brain regions are

associated with other, higher-order cognitive processes that may

be important for social interactions—the ATL and STS are associ-

ated with the representation of person-specific information

(Anzellotti, 2017; Anzellotti & Caramazza, 2017; Blank et al., 2015;

Collins et al., 2016; Olson et al., 2013; Perrodin et al., 2015;

Simmons et al., 2010; Wang et al., 2017), and the IFG is implicated

in a range of executive processes, such as working memory and

behavioral inhibition (Breitling et al., 2020; Drummond et al., 2017;

Hartwigsen et al., 2019). Thus, it is unclear if the overlapping activ-

ity associated with social interaction reported by Alkire et al. (2018)

is specific to mentalizing, or reflects other cognitive processes uti-

lized within social interactive contexts.

Multi-voxel, pattern-based approaches help alleviate some of

the problems of reverse inference (Hebart & Baker, 2018;

Poldrack, 2011). In particular, representational similarity analysis

(RSA) leverages voxel-wise activity patterns to estimate the simi-

larity of neural responses elicited by different task conditions,

which can be used to infer commonalities in the underlying

neurocognitive process (Kriegeskorte et al., 2008). RSA has proven

to be a useful tool for assessing similarities between domain-

general and social-cognitive functions (e.g., similar response pat-

terns for social and physical distance in the inferior parietal lobule;

Parkinson et al., 2014), and for disentangling subtle differences in

response patterns across brain regions engaged by a common task

that are indicative of diverging function (e.g., different trait dimen-

sions represented across cortical midline structures during self–

other judgments; Feng et al., 2018). Of interest, applications of this

approach in adult samples have demonstrated that activity pat-

terns in mentalizing regions maintain stable representations of

mental states across targets (e.g., personally known versus abstract

others; Weaverdyck et al., 2021), enable fine-grained inferences of

others' emotions (Skerry & Saxe, 2015), and are involved in learn-

ing social information about unknown others (Dziura &

Thompson, 2018). Importantly, RSA has revealed that activity pat-

terns in mentalizing regions of both adults and children distinguish

mental-state information and nonmental, social information, and

that the distinctiveness of these patterns increased from 5 to

12 years of age, even when univariate activations do not exhibit a

relationship with age (Richardson et al., 2020). Together, these

findings demonstrate that RSA provides a sensitive approach to

assess the similarity of neurocognitive processes associated with

social interaction and mentalizing, and to assess how this relation-

ship changed with age.

3 | CURRENT STUDY

The overarching goal of the current study is to advance our under-

standing of the neuro-representational links between social interac-

tion and mentalizing during the transition to adolescence. In

particular, the current work was motivated by three central questions:

(1) Do brain regions associated with social interaction exhibit evidence

for spontaneous mentalizing? (2) How does the neural similarity

between social interaction and mentalizing change from middle-

childhood to early adolescence? (3) What are common neuro-

representational links between social interaction and mentalizing

exhibited across social brain regions? To accomplish this, we utilized a

larger sample of participants who underwent the experimental para-

digm originally reported by Alkire et al. (2018), wherein participants

played a guessing game with a live interaction partner who provided

hints, as well as making guesses about an abstract character, the hints

for which were generated by a computer. In both cases, half of the

hints involved information about the target's mental state and half

involved nonmental, physical information about the target to deter-

mine the right answer. This yielded a within-subject, 2 (Peer/Charac-

ter) � 2 (Mental/Nonmental) design that enabled us to quantify the

similarity of brain activity patterns associated with offline mentalizing

and social interaction, and assess fit with models about the underlying

neurocognitive process involved (Figure 1).

We formalized three conceptual models of the neurocognitive

links between social interaction and mentalizing. Consistent with the

idea that social interaction engages spontaneous mentalizing, Model

1 (the “interaction engages mentalizing” model) proposes that interac-

tions with a peer elicit a similar pattern of brain activity as when think-

ing about the mental state of a character, but that is dissimilar from

the pattern of brain activity elicited by thinking about nonmental char-

acteristics of a character. Alternatively, Model 2 (the “interaction”
model) proposes that the interactive peer context and the character

conditions elicit dissimilar patterns of brain activity from each other,

but do not distinguish mentalizing and nonmental state reasoning

from either target. Finally, Model 3 (the “mentalizing” model) proposes

that mentalizing and nonmental state reasoning elicit dissimilar pat-

terns of brain activity, but does not distinguish between peer and

character conditions.

To address the first question of whether brain regions associ-

ated with social interaction show evidence for spontaneous

mentalizing, we calculated the fit to each of our three conceptual

models within a set of a priori regions of interest (ROIs) commonly

implicated in studies of social interaction that were obtained from

Neurosynth (Yarkoni et al., 2011). Additionally, convergent evidence

for the ROI analysis was sought through exploratory whole-brain

searches for model fit using the searchlight approach (Supplemental

Section 5). Because the transition to adolescence is marked by sig-

nificant changes in social-interactive contexts and mentalizing capa-

bilities, we further assessed how neural similarity between social

interaction and mentalizing changed from middle childhood to early

adolescence by examining the relationship between age and model

fit in each of the aforementioned social interaction ROIs. Finally,
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because we are interested in the contribution of brain structure

associated with other social cognitive processes in linking social

interaction and mentalizing, we conducted model-free analyses in a

larger set of “social brain” ROIs obtained from Alcalá-L�opez

et al. (2018). The motivation for this set of analysis was to elucidate

neuro-representational links between social interaction and

mentalizing that were not captured by our a priori models, and to

uncover similarities across brain regions in terms of their neural simi-

larity structure (also known as “representational connectivity”).

4 | METHODS

4.1 | Participants

A sample of 92 neurotypical 8- to 14-year-old participants were

enrolled in a larger, multi-session project investigating the neural cor-

relates of social interaction during middle childhood. Participants were

recruited from the greater Washington, DC area, and exclusionary

criteria included MRI contraindications, diagnosis of neurological or

F IGURE 1 Schematic of the social-
interactive fMRI task (a). Participants were
given a half-second cue indicating if they
would be answering questions provided
by their interaction partner (peer) or
answering questions presented by the
computer about a story character
(character). Hints were provided for 3.5 s
and either required using mental state

information about the target (mental), or
nonmental, physical information
(nonmental). This yielded a fully within-
subject, 2 (peer/character) � 2 (mental/
nonmental) design (b). PM, peer mental;
PNM, peer nonmental; CM, character
mental, and CNM, character nonmental.
Model 1 = interaction engages
mentalizing (c), model 2 = interaction
model (d), and model 3 = mentalizing
model (e)
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psychiatric disorders, first-degree relatives with autism or schizophre-

nia, and nonnative English speakers. A subset of 72 participants was

selected for the current analyses because they completed at least two

usable fMRI runs of the social interaction fMRI task described in

Alkire et al. (2018) and believed in the manipulation that they were

interacting with another peer in real time. Results from 28 participants

of our sample of 72 are reported in Alkire et al. (2018), but using an

orthogonal approach of group-averaged, univariate activation. The

minimum of two usable runs (i.e., 12 trials per condition) follows work

indicating that neural representations can be captured with fewer tri-

als than in traditional activation studies (Zeithamova et al., 2017), and

follow-up analyses using only participants with three and four usable

runs were conducted and reported in the Supplemental Information

for additional validation. A run was deemed usable if the average head

motion during the run was under 0.5 millimeter (mm) framewise dis-

placement as defined by Power et al. (2014), and if less than 10% of

the volumes were censored (i.e., regressed out) for having movement

over 1 mm framewise displacement. Of the final sample of 72 partici-

pants, 28 were female and 44 were male, with a mean (standard devi-

ation) age of 10.8 (1.79), and an age range of 8–14.6 years (Table 1).

4.2 | Experimental protocol

The experimental protocol is the same as outlined by Alkire et al. (2018).

Briefly, participants were instructed that they would be chatting with a

peer in a different lab who would also be undergoing a brain scan, and

were shown pictures of two age- and gender-matched peers that they

could choose from. In actuality, there were no live interaction peers,

and every participant received the same stimuli. Participants were

instructed on the “guessing game” that they played during the scan

wherein participants were given a hint by their interaction partner on

half the trials (Peer condition), and from the computer about a fictional

story character for the other half of the trials (Character condition). It

was the job of the participant to answer the question “Which will

I/she/he pick?” (Mental condition) or “Which of these match?”
(Nonmental condition) via button-press to select the appropriate

response from the two answer choices. Mental and Nonmental items

were counterbalanced across participants such that each item was

presented in the Peer and Character conditions roughly an equal num-

ber of times throughout data collection to prevent unintended biases.

This yielded a fully within-subject, 2 (Peer/Character) � 2 (Mental/

Nonmental) design. The guess phase of each trial (encompassing the

target cue, hint, and response options; Figure 1a) was modeled as our

event of interest and was followed by a 2–6 s jittered period before

feedback about the correct answer was provided for 2 s. The task was

presented using PsychoPy (Peirce, 2007) over four functional runs,

each with six trials per condition for a total of 24 trials per run. After

scanning, participants completed a questionnaire asking about their

enjoyment of and engagement with the Peer and Character conditions

to assess the impact of the live-interaction manipulation (additional

details are provided in Supplemental Methods 1).

4.3 | Behavioral data analysis

Analyses of behavioral task performance—accuracy (percent correct)

and reaction time (RT) in seconds—and the postscan questionnaire were

conducted using R (R Core Team, 2020) and JASP (JASP Team, 2020).

The continuous variables of age, accuracy, and RT were first assessed

using the Shapiro–Wilk test for normality, and data were transformed as

needed to meet the assumptions of the parametric analysis of variance.

Between-group t-tests for each condition's accuracy and RT were calcu-

lated to assess gender effects, and if either measure showed significant

gender differences for any condition, gender was entered as a covariate

in the subsequent analysis of variance for the measure. Correlations

with age for each condition's accuracy and RT were calculated to assess

age effects, and if either measure showed a significant correlation with

age for any condition, age was entered as a covariate in subsequent

analysis of variance for the measure. Accuracy and RT were each

entered into two-way repeated measures analysis of variance (with

appropriate covariate as needed) to determine main effects of social

interaction (Peer vs. Character) and mentalizing (Mental vs. Nonmental),

and their interaction. Significant results were interrogated further with

follow-up t-tests. Responses to the postscan questionnaire about partic-

ipants’ enjoyment and attention were compared between the Peer and

Character conditions using paired samples t-tests.

4.4 | MRI acquisition and data processing

FMRI data were acquired at the Maryland Neuroimaging Center on a 3.0

Tesla scanner with a 32-channel head coil (MAGNETOM Trio Tim Sys-

tem, Siemens Medical Solutions). Four runs of the task were acquired

using multiband-accelerated echo-planar imaging (66 interleaved axial

slices, multiband factor = 6, voxel size= 2.19 � 2.19 � 2.20 mm, repeti-

tion time = 1250 ms, echo time = 39.4 ms, flip angle = 90�, pixel

matrix = 96 � 96) followed by a structural scan (3D T1 magnetization-

prepared rapid gradient-echo sequence, 192 contiguous sagittal slices,

voxel size = 0.45 � 0.45 � 0.90 mm, repetition time = 1900 ms, echo

TABLE 1 Race/ethnicity information for the full sample

Race/ethnicity Count (percent)

Asian 3 (4.2%)

Black/African American 26 (36.1%)

Hispanic/Latino 7 (9.7%)

Native American/Alaskan 2 (2.8%)

White 47 (65.3%)

Multiple races/ethnicities 10 (13.9%)

Prefer not to say/no response 1 (1.4%)

Note: Race and ethnicity categories are based on required National

Institutes of Health reporting requirements and reflect the categories that

participants were presented with as options, but are not necessarily

aligned with current best practices for how race and ethnicity should be

referenced.
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time = 2.32 ms, flip angle = 9�, pixel matrix = 512 � 512), and opposite

phase-encoding fieldmap scans (66 interleaved axial slices, voxel

size = 2.19 � 2.19 � 2.20 mm, repetition time = 7930 ms, echo

time = 73 ms, flip angle = 90�, pixel matrix = 96 � 96). Neuroimaging

data were preprocessed using fMRIPrep 1.4.1 (Esteban et al., 2019).

Briefly, anatomical images were segmented and normalized to MNI

space; functional images were skull-stripped, susceptibility distortion

corrected, realigned, slice-time corrected, coregistered, and warped to

the normalized anatomical image (see Supplemental Methods 2 for full

fMRIprep preprocessing pipeline). Additionally, functional data were

masked using subject/run-specific masks generated by fMRIprep, and

intensity normalized to a mean of 100 per voxel. Subject-level, voxel-

wise multiple linear regression was calculated using AFNIs (Cox, 1996)

3dREMLfit for each run separately. The guess period, which includes the

target cue (Peer/Character), hint, and responses options (Figure 1a), for

each of the four conditions (i.e., Peer Mental, Peer Nonmental, Character

Mental, and Character Nonmental) was modeled as our events of inter-

est. This was achieved by convolving the guess period with the canonical

hemodynamic response using a duration modulated response function

(AFNIs dmBlock) with RT as duration to ensure that cognition related to

the guess period was captured. The feedback period was modeled sepa-

rately as events of no interest, along with the six motion parameters (x,

y, z, roll, pitch, and yaw), their derivatives, and volumes censored due to

framewise displacement >1 mm. This process yielded subject-level t-

maps for each condition, which were used for all subsequent analyses.

4.5 | Representational similarity analysis

Neural representational dissimilarity matrices (RDMs) were calculated

per subject for each ROI by extracting voxel-wise t-values associated

with each condition, using the voxel-wise values to calculate the

Euclidean distance between each pair of conditions using the

CoSMoMVPA toolbox for MATLAB (Oosterhof et al., 2016), and nor-

malizing the RDMs by subtracting the minimum Euclidean distance

and dividing by the range. Neural RDMs were then tested against

three conceptual models of hypothesized relationships between con-

ditions, which were formalized as binary RDMs wherein 0 = similar

and 1 = dissimilar. Model 1, or the “interaction engages mentalizing”
model, proposes that all interactions with a peer, regardless of explicit

mental state information, elicit a similar pattern of brain activity as

thinking about the mental state of a character, which is dissimilar from

the pattern of brain activity elicited when thinking about nonmental

characteristics of a character. That is, this model formalizes Character

Mental and both Peer conditions as being similar to each other

(i.e., condition-pairs between each are 0's), and each are dissimilar

(i.e., have 1's) from Character Nonmental condition. Model 2, or the

“interaction” model, states that both Peer conditions are similar to

each other and both Character conditions are similar to each other,

but Peer and Character conditions are dissimilar from each other.

Model 3, or the “mentalizing” model, states that both Mental condi-

tions are similar to each other and both Nonmental conditions are

similar to each other, but Mental and Nonmental conditions are dis-

similar from each other (Figure 2).

Model fit was estimated by calculating Kendall's Tau-a rank-order

correlation coefficient between the off-diagonal elements of the neu-

ral and model RDMs using the RSA toolbox for MATLAB (Nili

et al., 2014). For each ROI, model fit was calculated between each

participant's neural RDM and the three model RDMs, and were trans-

formed to z value using the Kendall's Tau normal approximation for-

mula (z = 3τ*√n(n � 1)/√2(2n + 5)). The model fit estimates were

entered into a Bayesian multilevel (BML) model using AFNIs RBA

F IGURE 2 Steps for model-based representational similarity analysis: We first estimate the voxel-wise response pattern for each condition
for a given brain region using unsmoothed subject-level models (a), then calculate the Euclidean distance between response patterns for each pair
of conditions to construct our neural dissimilarity matrices (which can also be visualized as dendrograms; b), and estimate fit to each of our
models by calculating Kendall's tau-a (c). For the representational connectivity analyses, you examine the fit between the neural dissimilarities
between brain regions (d)
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program (Chen et al., 2019) to assess the strength of evidence in favor

of each model per ROI. This approach confers multiple advantages

over the traditional null hypothesis significance testing framework—

the ability to get around the issue of multiple comparison corrections

through the calculation of a single model that accounts for the hierar-

chical structure of the data, better model fit afforded by the estima-

tion of informed priors using partial pooling of data across levels, and

the full reporting of results rather than dichotomizing findings based

on significance thresholds (Chen et al., 2021). As a proof-of-concept,

we used the aforementioned approach to conduct a preliminary re-

analysis of the brain regions reported by Alkire et al. (2018) that

exhibited overlapping univariate activations for social interaction and

mentalizing, indicative of Model 1 fit. RSA revealed that only two of

the four ROIs exhibited strong evidence for Model 1 fit (the “interac-
tion engages mentalizing” model), which demonstrated the sensitivity

of RSA and motivated the subsequent analyses (Figure S1). The code

for all RSA is available at https://github.com/JunaidMerchant/

CMNT_RSA.

4.6 | Model fit analysis of social interaction ROIs

We conducted a set of theory-driven analyses utilizing a set of ROIs

obtained through NeuroSynth (Yarkoni et al., 2011) to examine repre-

sentational similarity within brain regions associated with social inter-

action. The motivation behind this set of analyses was to examine

brain areas associated with social interaction that may exhibit patterns

of activity indicative of mentalizing, thereby providing a better under-

standing of the role of mentalizing in interactive contexts. To this end,

we first binarized (threshold = 0.5) and combined (addition) the meta-

analytic maps from NeuroSynth association tests of the search terms

“social interaction” and “social interactions” using AFNIs 3dcalc. The

resulting map was thresholded to a minimum cluster size of 50 voxels

(nearest neighbor = 3) to retain ROIs of theoretical importance while

eliminating numerous small clusters. This resulted in a set of 13 ROIs:

dmPFC, ventromedial PFC (vmPFC), perigenual anterior cingulate cor-

tex (pgACC), subgenual ACC (sgACC), bilateral TPJ, bilateral ATL, bilat-

eral cerebellum (Crblm), left caudate, right inferior temporal gyrus

(ITG), and right ventrolateral PFC (vlPFC). Model fit estimates were

evaluated for each ROI using the BML procedure described in the pre-

vious section. To aid the reader in the interpretation of these results,

we focus on regions showing “very strong,” “strong,” and “moderate”
evidence of positive model fit as indicated by the intercept falling

beyond 97.5, 95%–97.5%, and 90%–95% quantile intervals, respec-

tively, under BML. These values were chosen because they corre-

spond with a two-tailed p values of .025, .05, and .1, respectively,

under conventional statistical testing framework (e.g., Xiao

et al., 2019). Of note, the focus on model fit in the positive direction

is because positive model fit has a meaningful interpretation. Age

related effects on model fit were evaluated by calculating the rank-

order correlations between age and model fit estimates only for the

ROIs exhibiting moderate to very strong evidence in favor of a

model fit.

4.7 | Model-free analysis of the social brain ROIs

Model-free analyses were conducted to evaluate if other,

nonhypothesized relations between task conditions exist in the social

brain, and to examine the organization of these regions based on pat-

tern similarity structure. That is, rather than examining fit to

prespecified models, “representational connectivity” analysis esti-

mates the relationship between brain areas in terms of how similar

they represent the four conditions. This allows us to uncover clusters

of brain regions that are “representationally connected” in terms of

how they link social-interactive and mentalizing processes. To this

end, we started with a set of 36 publicly available ROIs derived from

an extensive set of meta-analytic, data-driven analyses of 3972 social

neuroscience studies using fMRI and/or PET imaging (Alcalá-L�opez

et al., 2018). The ROIs were resampled to the resolution of our func-

tional data and inflated within a gray matter mask informed by white

matter and CSF skeleton to maintain a comparable amount of brain

coverage and attention to anatomical contours. The resulting ROIs

had a uniform volume of 120 voxels.

Analyses of these social brain ROIs proceeded in three major

steps. Step 1: because the social brain ROIs cut across many different

brain systems that may not be involved in any of our task conditions,

it was necessary to calculate the lower bound of the “noise ceiling,”
which expresses how consistent the representations are across partic-

ipants. Noise ceiling calculation was conducted for each ROI and

tested against zero (i.e., no consistency across participants) to deter-

mine their inclusion in further analyses (Lage-Castellanos et al., 2019).

Noise ceiling was calculated by creating an average neural RDM

across all but one participant, calculating Kendall's Tau-a between this

average RDM and the neural RDM from the left-out participant, and

iterating this process across participants. The Kendall's Tau-a coeffi-

cients were then tested against zero using Wilcoxon signed-rank tests,

and ROIs with a noise ceiling significantly above chance were

retained.

Step 2: the resulting ROIs were interrogated using exploratory

factor analysis (EFA; Fabrigar & Wegener, 2011) to determine the fac-

tor structure of the response patterns across the ROIs, which eluci-

dated the number of groups that the ROIs were separated into based

on representational connectivity (i.e., shared similarity structures

between ROIs). This was conducted by first averaging the neural

RDMs across participants for each ROI, and entering the averaged

Euclidean distances into an EFA using minimum residual extraction

and oblimin rotation (though results from principal axis extraction and

other rotation methods yielded similar results). A cut-off eigenvalue of

1 and a minimum of 80% explained variance were used to determine

the factor solution. Step 3: the Euclidean distances were used to cal-

culate correlations between each pair of ROIs, which were submitted

to a hierarchical cluster analysis using Ward's method (Ward, 1963) to

identify clusters of regions with similar neural similarity structures,

and the number of clusters were set to the number of factors deter-

mined from the EFA. The neural RDMs for each ROI within each clus-

ter were averaged together and qualitatively examined for a better

understanding of the neural representations of each cluster of ROIs.
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5 | RESULTS

5.1 | Behavioral data analysis

Shapiro–Wilk tests for normality revealed that accuracy measures vio-

lated the assumption of normality (Table S3). Arcsin square root trans-

formation of accuracy scores (the recommended transformation for

percentages) did not fix the distribution of these measures to pass the

Shapiro–Wilk tests for normality (nor any other transformations).

Because there are no nonparametric equivalents of the two-way

repeated-measures ANOVA, we proceeded with the parametric ana-

lyses as planned, but reported results of nonparametric tests for each

of the significant effects we obtained from the accuracy ANOVA

(Table S6).

No significant gender effects were revealed from the indepen-

dent samples t-tests of the accuracy and RT scores for each simple

condition, and when using nonparametric tests (all p values >.16), thus

gender was not included in the analyses of variance reported below

(however, ANCOVAs with gender as a covariate can be found in the

Supplemental document and are consistent with the results reported

below). There were significant negative correlations with age for all

RT measures (all p values <.004), indicating that participants

responded more quickly with age. Using Spearman's rank-order corre-

lation, significant positive correlations with age were revealed for

accuracy on all Mental trials (combining Character Mental and Peer

Mental), rho(70) = .28, p = .02, and Character Mental trials, rho

(70) = .25, p = .017, indicating better performance on these trials with

increasing age. Age was therefore subsequently used as a covariate

for the accuracy and RT analyses of variance.

A 2 (Target: Peer vs. Character) � 2 (Question type: Mental

vs. Nonmental) repeated measures ANCOVA with age as a covariate

on accuracy scores revealed a main effect for question type, F

(1,70) = 4.83, p = .031, indicating higher accuracy for Mental ques-

tions, and an age-by-question type interaction, F(1,70) = 6.99,

p = .01, such that the difference in accuracy between Mental and

Nonmental questions is greater with increasing age (Figure 3a;

Table 2a). The same pattern of results was obtained when including

gender as an additional covariate (Table S5), and were partially vali-

dated by nonparametric tests (Table S6). A 2 (Target: Peer

vs. Character) � 2 (Question type: Mental vs. Nonmental) repeated

measures ANCOVA with age as a covariate on RT scores revealed a

main effect for age, F(1,70) = 14.24, p < .0005, indicating faster over-

all RT with age; a significant target-by-question type interaction, F

(1,70) = 4.19, p = .044, such that there is a bigger RT difference

between Mental and Nonmental for the Peer condition; and a signifi-

cant three-way interaction, F(1,70) = 4.78, p = .032, such that the dif-

ference between Peer Mental and Peer Nonmental gets bigger with

age (Figure 3b; Table 2b). A similar pattern of results was obtained

when including gender as an additional covariate (Table S4).

Paired-sample t-tests of the postscan questionnaire replicated

the results reported in Alkire et al. (2018), such that participants

reported greater enjoyment and paid more attention during the Peer

compared to the Character conditions, all ps < .001. Exploratorily, we

compared self-reported difficulty when making guesses about the

Peer versus Character, which indicated that participants found the

conditions equally challenging, p = 0.65 (Table S7).

5.2 | Social interaction ROIs

5.2.1 | Model fit analyses

Across the 13 social interaction ROIs, four exhibited very strong evi-

dence in favor of Model 1 fit in our sample: bilateral ATL and bilateral

TPJ as indicated by the intercept falling beyond the 97.5% quantile of

the ROIs' posterior distributions. Model 1 fit in the bilateral ATL con-

verges with findings from the re-analysis of the conjunction ROIs

which also revealed moderate to strong evidence for Model 1 fit in

these regions (Supplemental Section 2). Additionally, the right cerebel-

lum and right ITG showed strong evidence in favor of Model 1 fit as

indicated by the intercept falling in between the 95% and 97.5% qua-

ntiles of the ROIs' posterior distribution, and the right vlPFC exhibited

F IGURE 3 Visualizations of the 2 � 2 analysis of covariance for
accuracy (a) and reaction time (b). Plots use median split on age to
visualize the interactions even though the analyses were conducted
using age as a continuous variable
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moderate evidence for Model 1 fit as indicated by the intercept falling

in between the 90% and 95% quantiles of the ROIs posterior distribu-

tion. Five ROIs also exhibited very strong evidence in favor of Model

2 fit in our sample (bilateral TPJ, dmPFC, left cerebellum, and

perigenual ACC), one ROI exhibited strong evidence in favor of Model

2 fit (left caudate), and four ROIs exhibited moderate evidence in

favor of Model 2 fit (right ATL, right ITG, right vlPFC, and vmPFC;

Figure 4b). Only two ROIs exhibited moderate evidence supporting

TABLE 2 Full report of (a) accuracy and (b) reaction time ANCOVAs

(a) Accuracy ANCOVA

Within subjects effects Sum of squares df Mean square F p η2

Target 0.013 1 0.013 3.732 .057 7.00E�03

Target � Age 0.01 1 0.01 2.782 .1 0.005

Residuals 0.251 70 0.004

Question type 0.014 1 0.014 4.834 .031 7.00E�03

Question type � Age 0.02 1 0.02 6.994 .01 1.00E�02

Residuals 0.205 70 0.003

Target � Question type 0.004 1 0.004 1.421 .237 0.002

Target � Question type � Age 0.004 1 0.004 1.322 .254 0.002

Residuals 0.197 70 0.003

Between subjects effects

Age 0.029 1 0.029 1.682 0.199

Residuals 1.228 70 0.018

Descriptives

Target Question type Mean SD N

Character Mental 0.9 0.085 72

Nonmental 0.881 0.083 72

Peer Mental 0.91 0.078 72

Nonmental 0.896 0.085 72

(b) Reaction time ANCOVA

Within subjects effects Sum of squares df Mean square F p η2

Target 0.008 1 0.008 0.673 .415 2.95E�04

Target � Age 0.043 1 0.043 3.655 .06 0.002

Residuals 0.815 70 0.012

Question type 0.014 1 0.014 1.358 .248 5.42E�04

Question type � Age 0.023 1 0.023 2.21 .142 8.82E�04

Residuals 0.744 70 0.011

Target � Question type 0.05 1 0.05 4.194 .044 0.002

Target � Question type � Age 0.057 1 0.057 4.779 .032 0.002

Residuals 0.84 70 0.012

Between subjects effects

Age 4.057 1 4.057 14.235 3.34E�04

Residuals 19.952 70 0.285

Descriptives

Target Question type Mean SD N

Character Mental 2.096 0.297 72

Nonmental 2.11 0.308 72

Peer Mental 2.004 0.309 72

Nonmental 2.036 0.309 72

Note: Type III sum of squares.
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Model 3 fit (left cerebellum and right TPJ). Follow-up paired-sample

Wilcoxon signed-rank tests on the fit estimates for Models 1 and

2 for bilateral TPJ, right ITG, and right vlPFC (the ROIs showing evi-

dence for fit in both models) indicated no significant differences in the

model fit estimate (p values = .44–.96), suggesting that the similarity

in voxel-wise patterns between conditions in these regions support

multiple types of representations.

Additional support for the Model 1 fit in the left ATL comes

from our supplemental searchlight analyses that revealed clusters

in the left ATL and right posterior superior temporal sulcus (pSTS;

Supplemental Section 5), however, these were uncovered using an

exploratory uncorrected threshold, so interpretations must be

made with caution. The searchlight analyses provided additional

support for Model 2 fit in the dmPFC and bilateral TPJ, which also

uncovered clusters in the visual cortex, left pSTS, left IFG, and fron-

tal pole (Figure S4b and Table S10b). Searchlight for Model 3 did

not reveal a significant fit in any region, even at exploratory thresh-

old values.

5.3 | Age-related differences in model fits

Of the 17 ROI � model fit estimates exhibiting moderate to very

strong evidence in favor of model fit, three had significant negative

correlations between age and Model 2 fit when assessed using Spe-

arman's rank-order correlation (no significant correlations with

Model 1 fit): the left caudate, rho(70) = �.254, p = .031, left TPJ,

rho(70) = �.243, p = .04, and the right vlPFC, rho(70) = �.308,

p = .008. However, false discovery rate correction for 17 correla-

tions calculated rendered no age � model fit correlation significant,

thus these results should be interpreted with caution (Figure 4c).

Nonetheless, follow-up correlations and regression analyses were

F IGURE 4 (a) Social interaction ROIs
obtained from Neurosynth, (b) plots from
Bayesian multilevel models on model fit
for each ROI (b), and (c) scatter plots
visualizing the correlation of model 2 fit
and age for the left caudate, left TPJ, and
right vlPFC. Colors in the BML graph
indicate which quantile level each ROI
falls in, with green = 97.5% quantile or

more (very strong evidence),
orange = 95%–97.5% quantile range
(strong evidence), gray = 90%–95%
quantile range (moderate evidence)
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calculated using the between-condition Euclidean distances for

each of these ROIs to gain a better understanding of what might be

driving the decreasing model fit. This revealed a significant positive

correlation between age and Euclidean distance between Peer

Mental and Peer Nonmental conditions in the left caudate, rho

(70) = �.254, p = .031, which was confirmed by regression ana-

lyses that controlled for the effect of the other between-condition

distances. No significant correlations with age were found for the

between-condition distances in the left TPJ. The right vlPFC

exhibited a significant negative correlation between age and the

distance between Character Mental and Peer Nonmental condi-

tions, rho(70) = �.259, p = .028, and a significant positive correla-

tion between age and the distance between Peer Mental and Peer

Nonmental conditions, rho(70) = .234, p = .048, which were par-

tially confirmed by regression analyses that controlled for the

effect of the other between-condition distances (Table S9). The

finding that both the caudate and right vlPFC exhibited a positive

correlation between age and distance between the Peer Mental

and Peer Nonmental conditions suggests that as children transition

to adolescence, they develop increasingly distinct representations

of different types of information they process about their interac-

tion partner.

5.4 | Model-free analyses within the social brain

Analyses to examine the similarity structure of the social brain ROIs

proceeded in three steps: (1) ROI selection based on significantly

greater than zero noise ceiling; (2) exploratory factor analysis to deter-

mine the number of factors underlying the similarity structures of the

selected ROIs; (3) hierarchical clustering and qualitative examination

of the similarity structures of the ROIs clustered together.

Noise ceiling calculation revealed that 19 of the 36 ROIs were

significantly above chance, suggesting that these ROIs contain consis-

tent representations across our sample. This included bilateral ATL,

bilateral pSTS, bilateral supramarginal gyrus (SMG), bilateral cerebel-

lum (Cb), bilateral AI, left supplementary motor area (SMA), frontal

pole (fpole), vmPFC, precuneus (PCu), left hippocampus (HC), left TPJ,

right middle temporal gyrus (MTG), right fusiform face area (FFA), and

right middle temporal V5 area (MTV5). Thus, these 19 were included

in the next step of exploratory factor analysis (Figure 5a).

Exploratory factor analysis of these 16 ROIs yielded a 3-factor

solution that explained 87.2% of the variance in Euclidean distances.

Hierarchical clustering using Ward's method was used to estimate

three clusters that minimized the total within-cluster variance

(Figure 5b).

F IGURE 5 Social brain regions of interest (ROI) used in the representational connectivity analysis (a), and the results from the exploratory
factor analysis and hierarchical clustering (b). Dendrograms of neural dissimilarity for each cluster averaged across the ROIs comprising the
cluster (c)
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Qualitative examination of the averaged Euclidean distances of

each cluster of ROIs revealed that Cluster 3 (bilateral ATL, right pSTS,

and left HC; in blue) resembled Model 1, in that PM, CM, and PNM

were similar to each other, and different from CNM. Clusters 1 and

2 exhibited a pattern similar to Model 2, but differed in how well they

distinguished the Peer and Character conditions. Averaging the simi-

larity structures of the ROIs comprising Cluster 1 (vmPFC, frontal

pole, left SMA, bilateral AI, left SMG, PCu, left TPJ, right FFA, and

bilateral Cb; in yellow) revealed that, while the greatest dissimilarities

were between the Peer and Character conditions, the two Character

conditions were relatively more dissimilar from each other than the

two Peer conditions. The ROIs comprising Cluster 2 (left pSTS, right

MTG, right SMG, and right MTV5; in green) showed the reverse pat-

tern, such that, while the greatest dissimilarities were again between

the Peer and Character conditions, the two Peer conditions were rela-

tively more dissimilar from each other than the two Character condi-

tions (Figure 5c). Together, qualitative assessment of Clusters 1 and

2 suggest that regions exhibiting Model 2 fit might have differing sen-

sitivities to either the Peer or Character conditions.

6 | DISCUSSION

This is the first study to evaluate the assumption that mentalizing is

spontaneously engaged during social interactions by assessing the

similarity in brain response patterns associated with mentalizing and

peer interactions. Across our analyses we found the most consistent

evidence that offline mentalizing and live peer interactions elicit simi-

lar patterns of brain activity in the left ATL, but a dissimilar pattern of

activation when making nonmental state inferences about an abstract

character (i.e., the “interaction engages mentalizing” model or Model

1). Our findings align with traditional, offline studies of mentalizing

that have demonstrated differences in brain activity in this region

when making mental versus nonmental inferences about abstract

others (Aichhorn et al., 2009; Andrews-Hanna et al., 2014; Dodell-

Feder et al., 2011), and add to the literature by demonstrating that

patterns similar to mentalizing are elicited during social interactions

that do not explicitly require mental state reasoning. In addition to

providing support for the idea that mentalizing is spontaneously

engaged in social-interactive contexts, our results suggest that the

ATL and other temporal regions may contribute to the integration of

online and offline social-cognitive processes. That is, social interac-

tions involve the dynamic interplay between social knowledge that is

available offline, such as an understanding of mental state concepts,

and the online demands of reciprocal social exchange. This interpreta-

tion also fits with recent reviews describing how we get to know

others, which involves acquiring and updating person-specific knowl-

edge through online engagements with them, and implicates the ATL

and pSTS in this process (Anzellotti & Young, 2020; Kovács, 2020).

Consistent with the idea that the ATL supports the integration of

online and offline social processes, different lines of research have

demonstrated the convergence of multimodal, social information

processing streams in the anterior portions of the temporal lobe.

Ventral areas of the ATL have been associated with the representa-

tions of person-specific knowledge (e.g., names, faces, and biographi-

cal information; Anzellotti, 2017; Blank et al., 2015; Borghesani

et al., 2019; Kriegeskorte et al., 2007; Wang et al., 2017), while more

dorsal, anterior portions of the ATL are considered to be a semantic

hub for abstract social concepts (including mental-state concepts;

Arioli et al., 2020; Olson et al., 2007, 2013; Skipper et al., 2011; Wang

et al., 2019; Zahn et al., 2007). Conceptually, our findings span the

middle ground between the aforementioned lines of research in that

our results suggest that peer-specific and abstract knowledge about

mental states are integrated and represented similarly in the ATL. This

interpretation is supported by research indicating that the interplay

between ventral and dorsal ATL contributes to the successful

encoding and retrieval of information associated with a person's iden-

tity (Perrodin et al., 2015; Rice et al., 2018; Tsukiura et al., 2010).

Moreover, this work has demonstrated left lateralization for associat-

ing person-specific information with the individual's name (Abel

et al., 2015; Borghesani et al., 2019; Olson et al., 2013; Tsukiura

et al., 2008), which provides some explanation as to why our most

consistent findings were in the left ATL, since our stimuli used proper

names. However, even though our findings are consistent with the

different functional accounts of the ATL mentioned above, additional

work is needed to disentangle the specific computations engaged by

the ATL that links social interaction and mentalizing.

Many of the other brain regions we examined exhibited fit to

our “interaction” model that distinguishes the Peer and Character

conditions (Model 2), but does not distinguish between Mental and

Nonmental state reasoning for either target. This included brain

regions of the mentalizing network (TPJ and dmPFC), as well as

regions of the frontoparietal network (IFG, and IPL), the reward and

value systems (caudate and vmPFC), and large swaths of the visual

cortex (Supplemental Section 5). Model 2 fit in the visual cortex

highlights the sensitivity of RSA to lower-level visual dis/similarities

between the stimuli used in Peer and Character conditions

(i.e., differences in color and shape of the hints), while Model 2 fit in

other regions likely reflects key differences in attentional, motiva-

tional, and social cognitive demands between real-time engagement

with a live social partner and offline assessments of an unknown

character. Model-free examination of the social brain ROIs provided

additional support for this interpretation, in that the majority of the

social brain exhibited similar structures that clearly distinguished

between the Peer and Character conditions (i.e., Figure 5c). Repre-

sentational connectivity further revealed two variations of the simi-

larity structure that would fall under our Model 2, suggesting subtle

differences in the underlying neurocognitive representations that

are sensitive to either the Peer or Character conditions. Together,

our findings add nuance to the assumption of second-person neuro-

science that social cognition during social interaction is fundamen-

tally different from what has been revealed using third-person

approaches (Redcay & Schilbach, 2019; Schilbach et al., 2013) by

demonstrating differing sensitivities to second- and third-person

contexts across brain regions, but confirmatory research is needed

to provide support for this interpretation.
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Our findings are also consistent with previous work demonstrat-

ing changes in both mentalizing and social interaction as individuals

transition from middle childhood to adolescence (Richardson

et al., 2020). Accuracy scores indicate that mentalizing ability

improves with age (i.e., age-by-question-type interaction), and reac-

tion time measures suggest that this might be driven by an increased

efficiency in making mental state inferences specifically for peers

(i.e., significant three-way interaction between age, question type, and

target; Figure 3 and Table 2). These behavioral effects align with age-

related decreases in fit with the “interaction” model (Model 2) in the

left caudate and right vlPFC, which was driven by increasing neural

dissimilarity between the Peer Mental and Peer Nonmental condi-

tions. Because the vlPFC and caudate are associated with reward and

valuation (Bartra et al., 2013; Nejati et al., 2018), this result may relate

to the ever-increasing importance of peers, and particularly the need

to understand their perspectives, during this age range. Indeed,

research has demonstrated heightened sensitivity of the reward sys-

tem to social contexts during the transition into adolescence (Chein

et al., 2011; Moreira & Telzer, 2018; Smith et al., 2015), and a related

increase in the tendency to automatically integrate peer perspectives

into self-evaluations (Jankowski et al., 2014; Pfeifer et al., 2009; Van

der Cruijsen et al., 2019). It is worth noting that the conditioned social

reward associated with “texting” might confound the inherent reward

experienced in social interactive contexts since the Peer condition

stimuli were presented in a format that resembles text messages,

especially given that the age range of our sample is when individuals

start obtaining their own mobile devices to chat with their peers.

However, this interpretation is hard to reconcile with the fact that the

age-related changes we found were for increasing dissimilarity

between the two Peer conditions, which would not be expected if the

reward-related activity was driven by associations with texting in gen-

eral. Nonetheless, the current findings add to our understanding of

the development of social cognition by demonstrating that improve-

ments in mentalizing capacity (or propensity to do so) during the tran-

sition to adolescence are particularly salient in social-interactive

contexts.

The developmental findings of the current project were enabled,

in part, by the rapid changes in social and neural development that

occur during the pre-adolescent to early adolescent ages (Kilford

et al., 2016; Mills et al., 2014), but our snapshot of this narrow age

range also limits the generalizability of our results to other ages and

populations. Thus, it is unknown whether the age-related differences

in the representational similarity structures we observed would con-

tinue in a linear trajectory as individuals transition into late adoles-

cence and adulthood, or if they would return to pre-adolescent levels

similar to the inverted-U shape trajectories observed in other social-

cognitive domains (Kilford et al., 2016; Somerville et al., 2013). This

unknown is particularly challenging for many of our results in cortical

regions associated with social cognition that undergo substantial

structural changes well into adulthood, even though whole-brain vol-

ume remains relatively stable after late childhood (Mills et al., 2014,

2016). At a theoretical level, although much of the motivation of the

current work was to understand if mentalizing is a constituent process

of social interaction, others have argued for the primacy of early

social-interactive experiences as the driving force for later-developing

social-cognitive abilities, like mentalizing outside of social-interactive

contexts (Schilbach, 2014). That is, early social interactions may

enable the neural architecture upon which offline mentalizing abilities

develop. Together, our findings add to the developmental social cog-

nitive literature, but data from a sample with a wider age range is

needed to fill in the developmental trajectory of the relationship

between offline mentalizing and social interaction.

In addition to advancing our theoretical understanding of the

development of social cognition, the current work also demonstrates

the utility of pattern-based analyses for uncovering links between

constituent processes involved in social behavior. The re-analysis of

the brain regions reported by Alkire and colleagues that showed over-

lapping activations for social interaction (without explicit mentalizing

demands) and offline mentalizing (Supplementary Section 2) provided

proof-of-concept for the sensitivity of RSA to elucidate underlying

neurocognitive relationships that were unobtainable through univari-

ate analyses. Despite expectations that overlapping activations were

indicative of the “interaction engages mentalizing” model (Model 1),

only two of these regions exhibited robust evidence for Model 1 fit,

and two exhibited very strong evidence in favor of the “interaction”
model that distinguishes the Peer and Character conditions (Model 2;

Supplemental Section 2). However, our approach had limitations. First,

because our models are not completely orthogonal, some ROIs

exhibited comparably strong evidence for fit to Models 1 and 2 that

were not disambiguated by direct comparison of model fit estimates

(e.g., bilateral TPJ from social interaction ROIs; Figure 4b). Thus, it is

unclear whether these regions might be subserving multiple functions

or if this is merely an artifact of the way our models are set up. This

limitation in modeling approach reflects our factorial task design,

which also presents the limitation of dichotomizing the Peer and

Character conditions. That is, research has demonstrated that

responses in the mentalizing network are sensitive to factors like tar-

get familiarity and closeness (Laurita et al., 2017; Tacikowski

et al., 2013) and how human-like the interacting agent appears

(i.e., computers versus anthropomorphic robots versus human; Krach

et al., 2008; Takahashi et al., 2014). Thus, it is possible that growing

familiarity with the Peer during the course of the experiment and dif-

ferences in how realistic the Character was perceived to be may have

muddied our ability to distinguish between fit to the different models.

Potentially related to the limitations of our modeling approach, it

is noteworthy that we found only moderate evidence for two regions

(left cerebellum and right TPJ) exhibiting fit to the “mentalizing”
model that distinguishes the Mental and Nonmental conditions

(Model 3), especially since previous work in our lab using the same

experiment revealed activation differences between the Mental and

Nonmental conditions in many regions. Model 3 fit in the right TPJ is

supported by multi-voxel investigations of mentalizing fMRI data that

demonstrate decodable mental state representations in this region

(Koster-Hale et al., 2013; Koster-Hale et al., 2017; Richardson

et al., 2020; Weaverdyck et al., 2021), but we did not find convergent

evidence for this finding through our searchlight analysis. There are
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several reasons as to why this might be the case. First, as in previous

studies (e.g., Gweon et al., 2012), our task tightly controls for social

information processing by matching conditions with equally social

stimuli that do not include mental-state information (i.e., the Peer and

Character Nonmental conditions). Research on children in this age

range has demonstrated that the mentalizing regions exhibit increas-

ing specificity to mental states compared to nonmental social informa-

tion from childhood into adulthood (Gweon et al., 2012; Richardson

et al., 2020), and thus the age range of our sample may have contrib-

uted to our lack of significant Model 3 fit. This interpretation is

supported by our behavioral analyses which revealed better accuracy

for Mental trials and quicker response for the Peer Mental trials with

age (Figure 3 and Table 2). The inclusion of a matched, but fully non-

social condition would aid in teasing apart the effects of social

development.

Another factor potentially contributing to the minimal dissimilar-

ity between mental and nonmental conditions is that the items com-

prising the Mental condition were deliberately varied to cover a range

of mental state categories, including wants, likes, knowledge, beliefs,

and emotions, while the Nonmental items asked about activities,

physical characteristics, abilities, situations, and possessions

(Table S1). Therefore, it is possible that this amount of variation led to

nonrepresentative response patterns when averaging across items for

each condition per subject. Furthermore, hints for the Mental trials

included language about mental states under the assumption that

such language would elicit some degree of mentalizing, but it is possi-

ble that some participants relied on strategies for making guesses that

cut across the Mental/Nonmental conditions, such as semantic associ-

ations between hint and response options. Following this interpreta-

tion, our behavioral effects for question type might reflect

confounding processes related to the Mental condition, such as the

inherent abstractness of the language used to describe mental states

versus physical attributes, which is particularly challenging to disen-

tangle because the representation of semantic associations, abstract

concepts, and social concepts are subserved by overlapping brain

regions (e.g., Binney et al., 2016; Xu et al., 2018).

The aforementioned interpretations do not align with the direc-

tion of our behavioral findings, nor with some of the activations

reported by Alkire et al. (2018). That is, if linguistic abstractness asso-

ciated with Mental trials was driving our behavioral effects, we would

expect slower reaction time and reduced accuracy (Borghi &

Zarcone, 2016), rather than the target-by-question type interactions

in RT and greater accuracy for Mental trials (Table 2). Activations in

the dmPFC for the Mental > Nonmental and the Peer Mental > Char-

acter Mental contrasts (Alkire et al., 2018) also do not align with prior

work that generally implicate lateral cortical structures in the

processing of abstract concepts (Binney et al., 2016; Conca

et al., 2021; Wang et al., 2010). Moreover, careful examination of our

experimental stimuli revealed that a substantial portion of the items

could not easily be answered through semantic association, and that

for some items, semantic associations would lead to the wrong

answer (e.g., “[Target] thinks skiing is dangerous” is semantically

related to “Mountain slope” even though the target picking “Hot

Cocoa” better matches the target's mental state; Table S1). Nonethe-

less, the explanations provided above do not preclude the possibility

that other, unrealized confounds may have contributed to our lack of

Model 3 fit, and future research should work to disentangle the

effects of linguistic processes that overlap with social cognition.

Despite these limitations, our findings demonstrate the impor-

tance of incorporating realistic, social-interactive contexts for a better

understanding of the neural substrates subserving everyday social

cognition, and they highlight the utility of pattern-similarity-based

analyses for examining the relationship between related social-

cognitive processes. Through this set of approaches, we provided

additional evidence for the spontaneous engagement of mentalizing

during social interactions, and spotlight the functional contributions of

the ATL toward integrating offline social cognition with online social

interactions. Future work could build on these findings by establishing

more precise neural and behavioral measures of mentalizing and

related social-cognitive processes to better establish process-level

similarities and differences between them. By elucidating the links

and dissociations between the various cognitive mechanisms underly-

ing social interactions, we will gain not only a better understanding of

the social behaviors that shape our world but also a more complete

cognitive map of how different neurocognitive functions relate to

each other.
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